这题十分有意思。简单描述题意,有一个巫师想抓一只怪物,于是就画出n条线段来围住怪物。问题是,巫师画出来的图形是否围住了怪物。
这题的做法是构建一幅图,无向图中的点就是线段的两个端点和怪物所在的位置点,以及一个无穷远点。然后要做的就是判断点与点之间是否直线相连。最后的到点与点间的关系,用floyd直接得到点与点间的可达关系。
其中,要注意的是,线段的头尾于另一线段重合了的情况,以及两线段交于用一个点的情况。
代码如下:
View Code
1 #include2 #include 3 #include 4 #include 5 #include 6 #include 7 #include 8 9 using namespace std; 10 11 // Point class 12 struct Point { 13 double x, y; 14 Point() {} 15 Point(double x, double y) : x(x), y(y) {} 16 } ; 17 template T sqr(T x) { return x * x;} 18 inline double ptDis(Point a, Point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));} 19 20 // basic calculations 21 typedef Point Vec; 22 Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);} 23 Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);} 24 Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);} 25 Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);} 26 27 const double EPS = 1e-10; 28 const double PI = acos(-1.0); 29 inline int sgn(double x) { return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);} 30 bool operator < (Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y);} 31 bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;} 32 33 inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;} 34 inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;} 35 inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);} 36 inline double vecLen(Vec x) { return sqrt(sqr(x.x) + sqr(x.y));} 37 inline double toRad(double deg) { return deg / 180.0 * PI;} 38 inline double angle(Vec v) { return atan2(v.y, v.x);} 39 inline double angle(Vec a, Vec b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));} 40 inline double triArea(Point a, Point b, Point c) { return fabs(crossDet(b - a, c - a));} 41 inline Vec vecUnit(Vec x) { return x / vecLen(x);} 42 inline Vec rotate(Vec x, double rad) { return Vec(x.x * cos(rad) - x.y * sin(rad), x.x * sin(rad) + x.y * cos(rad));} 43 Vec normal(Vec x) { 44 double len = vecLen(x); 45 return Vec(- x.y / len, x.x / len); 46 } 47 48 // Line class 49 struct Line { 50 Point s, t; 51 Line() {} 52 Line(Point s, Point t) : s(s), t(t) {} 53 Point point(double x) { 54 return s + (t - s) * x; 55 } 56 Line move(double x) { // while x > 0 move to (s->t)'s left 57 Vec nor = normal(t - s); 58 nor = nor * x; 59 return Line(s + nor, t + nor); 60 } 61 Vec vec() { return t - s;} 62 } ; 63 typedef Line Seg; 64 65 inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(a - x, b - x)) == 0 && sgn(dotDet(a - x, b - x)) < 0;} 66 inline bool onSeg(Point x, Seg s) { return onSeg(x, s.s, s.t);} 67 68 // 0 : not intersect 69 // 1 : proper intersect 70 // 2 : improper intersect 71 int segIntersect(Point a, Point c, Point b, Point d) { 72 Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d; 73 int a_bc = sgn(crossDet(v1, v2)); 74 int b_cd = sgn(crossDet(v2, v3)); 75 int c_da = sgn(crossDet(v3, v4)); 76 int d_ab = sgn(crossDet(v4, v1)); 77 if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1; 78 if (onSeg(b, a, c) && c_da) return 2; 79 if (onSeg(c, b, d) && d_ab) return 2; 80 if (onSeg(d, c, a) && a_bc) return 2; 81 if (onSeg(a, d, b) && b_cd) return 2; 82 return 0; 83 } 84 inline int segIntersect(Seg a, Seg b) { return segIntersect(a.s, a.t, b.s, b.t);} 85 86 // point of the intersection of 2 lines 87 Point lineIntersect(Point P, Vec v, Point Q, Vec w) { 88 Vec u = P - Q; 89 double t = crossDet(w, u) / crossDet(v, w); 90 return P + v * t; 91 } 92 inline Point lineIntersect(Line a, Line b) { return lineIntersect(a.s, a.t - a.s, b.s, b.t - b.s);} 93 94 // Warning: This is a DIRECTED Distance!!! 95 double pt2Line(Point x, Point a, Point b) { 96 Vec v1 = b - a, v2 = x - a; 97 return crossDet(v1, v2) / vecLen(v1); 98 } 99 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);}100 101 double pt2Seg(Point x, Point a, Point b) {102 if (a == b) return vecLen(x - a);103 Vec v1 = b - a, v2 = x - a, v3 = x - b;104 if (sgn(dotDet(v1, v2)) < 0) return vecLen(v2);105 if (sgn(dotDet(v1, v3)) > 0) return vecLen(v3);106 return fabs(crossDet(v1, v2)) / vecLen(v1);107 }108 inline double pt2Seg(Point x, Seg s) { return pt2Seg(x, s.s, s.t);}109 110 // Polygon class111 struct Poly {112 vector pt;113 Poly() { pt.clear();}114 Poly(vector pt) : pt(pt) {}115 Point operator [] (int x) const { return pt[x];}116 int size() { return pt.size();}117 double area() {118 double ret = 0.0;119 int sz = pt.size();120 for (int i = 1; i < sz; i++) {121 ret += crossDet(pt[i], pt[i - 1]);122 }123 return fabs(ret / 2.0);124 }125 } ;126 127 // Circle class128 struct Circle {129 Point c;130 double r;131 Circle() {}132 Circle(Point c, double r) : c(c), r(r) {}133 Point point(double a) {134 return Point(c.x + cos(a) * r, c.y + sin(a) * r);135 }136 } ;137 138 // Cirlce operations139 int lineCircleIntersect(Line L, Circle C, double &t1, double &t2, vector &sol) {140 double a = L.s.x, b = L.t.x - C.c.x, c = L.s.y, d = L.t.y - C.c.y;141 double e = sqr(a) + sqr(c), f = 2 * (a * b + c * d), g = sqr(b) + sqr(d) - sqr(C.r);142 double delta = sqr(f) - 4.0 * e * g;143 if (sgn(delta) < 0) return 0;144 if (sgn(delta) == 0) {145 t1 = t2 = -f / (2.0 * e);146 sol.push_back(L.point(t1));147 return 1;148 }149 t1 = (-f - sqrt(delta)) / (2.0 * e);150 sol.push_back(L.point(t1));151 t2 = (-f + sqrt(delta)) / (2.0 * e);152 sol.push_back(L.point(t2));153 return 2;154 }155 156 int lineCircleIntersect(Line L, Circle C, vector &sol) {157 Vec dir = L.t - L.s, nor = normal(dir);158 Point mid = lineIntersect(C.c, nor, L.s, dir);159 double len = sqr(C.r) - sqr(ptDis(C.c, mid));160 if (sgn(len) < 0) return 0;161 if (sgn(len) == 0) {162 sol.push_back(mid);163 return 1;164 }165 Vec dis = vecUnit(dir);166 len = sqrt(len);167 sol.push_back(mid + dis * len);168 sol.push_back(mid - dis * len);169 return 2;170 }171 172 // -1 : coincide173 int circleCircleIntersect(Circle C1, Circle C2, vector &sol) {174 double d = vecLen(C1.c - C2.c);175 if (sgn(d) == 0) {176 if (sgn(C1.r - C2.r) == 0) {177 return -1;178 }179 return 0;180 }181 if (sgn(C1.r + C2.r - d) < 0) return 0;182 if (sgn(fabs(C1.r - C2.r) - d) > 0) return 0;183 double a = angle(C2.c - C1.c);184 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d));185 Point p1 = C1.point(a - da), p2 = C1.point(a + da);186 sol.push_back(p1);187 if (p1 == p2) return 1;188 sol.push_back(p2);189 return 2;190 }191 192 void circleCircleIntersect(Circle C1, Circle C2, vector &sol) {193 double d = vecLen(C1.c - C2.c);194 if (sgn(d) == 0) return ;195 if (sgn(C1.r + C2.r - d) < 0) return ;196 if (sgn(fabs(C1.r - C2.r) - d) > 0) return ;197 double a = angle(C2.c - C1.c);198 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d));199 sol.push_back(a - da);200 sol.push_back(a + da);201 }202 203 int tangent(Point p, Circle C, vector &sol) {204 Vec u = C.c - p;205 double dist = vecLen(u);206 if (dist < C.r) return 0;207 if (sgn(dist - C.r) == 0) {208 sol.push_back(rotate(u, PI / 2.0));209 return 1;210 }211 double ang = asin(C.r / dist);212 sol.push_back(rotate(u, -ang));213 sol.push_back(rotate(u, ang));214 return 2;215 }216 217 // ptA : points of tangency on circle A218 // ptB : points of tangency on circle B219 int tangent(Circle A, Circle B, vector &ptA, vector &ptB) {220 if (A.r < B.r) {221 swap(A, B);222 swap(ptA, ptB);223 }224 double d2 = sqr(A.c.x - B.c.x) + sqr(A.c.y - B.c.y);225 double rdiff = A.r - B.r, rsum = A.r + B.r;226 if (d2 < sqr(rdiff)) return 0;227 double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);228 if (d2 == 0 && A.r == B.r) return -1;229 if (d2 == sqr(rdiff)) {230 ptA.push_back(A.point(base));231 ptB.push_back(B.point(base));232 return 1;233 }234 double ang = acos((A.r - B.r) / sqrt(d2));235 ptA.push_back(A.point(base + ang));236 ptB.push_back(B.point(base + ang));237 ptA.push_back(A.point(base - ang));238 ptB.push_back(B.point(base - ang));239 if (d2 == sqr(rsum)) {240 ptA.push_back(A.point(base));241 ptB.push_back(B.point(PI + base));242 } else if (d2 > sqr(rsum)) {243 ang = acos((A.r + B.r) / sqrt(d2));244 ptA.push_back(A.point(base + ang));245 ptB.push_back(B.point(PI + base + ang));246 ptA.push_back(A.point(base - ang));247 ptB.push_back(B.point(PI + base - ang));248 }249 return (int) ptA.size();250 }251 252 // -1 : onside253 // 0 : outside254 // 1 : inside255 int ptInPoly(Point p, Poly &poly) {256 int wn = 0, sz = poly.size();257 for (int i = 0; i < sz; i++) {258 if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1;259 int k = sgn(crossDet(poly[(i + 1) % sz] - poly[i], p - poly[i]));260 int d1 = sgn(poly[i].y - p.y);261 int d2 = sgn(poly[(i + 1) % sz].y - p.y);262 if (k > 0 && d1 <= 0 && d2 > 0) wn++;263 if (k < 0 && d2 <= 0 && d1 > 0) wn--;264 }265 if (wn != 0) return 1;266 return 0;267 }268 269 // if DO NOT need a high precision270 /*271 int ptInPoly(Point p, Poly poly) {272 int sz = poly.size();273 double ang = 0.0, tmp;274 for (int i = 0; i < sz; i++) {275 if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1;276 tmp = angle(poly[i] - p) - angle(poly[(i + 1) % sz] - p) + PI;277 ang += tmp - floor(tmp / (2.0 * PI)) * 2.0 * PI - PI;278 }279 if (sgn(ang - PI) == 0) return -1;280 if (sgn(ang) == 0) return 0;281 return 1;282 }283 */284 285 286 // Convex Hull algorithms287 // return the number of points in convex hull288 289 // andwer's algorithm290 // if DO NOT want the points on the side of convex hull, change all "<" into "<="291 int andrew(Point *pt, int n, Point *ch) {292 sort(pt, pt + n);293 int m = 0;294 for (int i = 0; i < n; i++) {295 while (m > 1 && crossDet(ch[m - 1] - ch[m - 2], pt[i] - ch[m - 2]) <= 0) m--;296 ch[m++] = pt[i];297 }298 int k = m;299 for (int i = n - 2; i >= 0; i--) {300 while (m > k && crossDet(ch[m - 1] - ch[m - 2], pt[i] - ch[m - 2]) <= 0) m--;301 ch[m++] = pt[i];302 }303 if (n > 1) m--;304 return m;305 }306 307 // graham's algorithm308 // if DO NOT want the points on the side of convex hull, change all "<=" into "<"309 Point origin;310 inline bool cmpAng(Point p1, Point p2) { return crossDet(origin, p1, p2) > 0;}311 inline bool cmpDis(Point p1, Point p2) { return ptDis(p1, origin) > ptDis(p2, origin);}312 313 void removePt(Point *pt, int &n) {314 int idx = 1;315 for (int i = 2; i < n; i++) {316 if (sgn(crossDet(origin, pt[i], pt[idx]))) pt[++idx] = pt[i];317 else if (cmpDis(pt[i], pt[idx])) pt[idx] = pt[i];318 }319 n = idx + 1;320 }321 322 int graham(Point *pt, int n, Point *ch) {323 int top = -1;324 for (int i = 1; i < n; i++) {325 if (pt[i].y < pt[0].y || (pt[i].y == pt[0].y && pt[i].x < pt[0].x)) swap(pt[i], pt[0]);326 }327 origin = pt[0];328 sort(pt + 1, pt + n, cmpAng);329 removePt(pt, n);330 for (int i = 0; i < n; i++) {331 if (i >= 2) {332 while (!(crossDet(ch[top - 1], pt[i], ch[top]) <= 0)) top--;333 }334 ch[++top] = pt[i];335 }336 return top + 1;337 }338 339 340 // Half Plane341 // The intersected area is always a convex polygon.342 // Directed Line class343 struct DLine {344 Point p;345 Vec v;346 double ang;347 DLine() {}348 DLine(Point p, Vec v) : p(p), v(v) { ang = atan2(v.y, v.x);}349 bool operator < (const DLine &L) const { return ang < L.ang;}350 DLine move(double x) { // while x > 0 move to v's left351 Vec nor = normal(v);352 nor = nor * x;353 return DLine(p + nor, v);354 }355 356 } ;357 358 Poly cutPoly(Poly &poly, Point a, Point b) {359 Poly ret = Poly();360 int n = poly.size();361 for (int i = 0; i < n; i++) {362 Point c = poly[i], d = poly[(i + 1) % n];363 if (sgn(crossDet(b - a, c - a)) >= 0) ret.pt.push_back(c);364 if (sgn(crossDet(b - a, c - d)) != 0) {365 Point ip = lineIntersect(a, b - a, c, d - c);366 if (onSeg(ip, c, d)) ret.pt.push_back(ip);367 }368 }369 return ret;370 }371 inline Poly cutPoly(Poly &poly, DLine L) { return cutPoly(poly, L.p, L.p + L.v);}372 373 inline bool onLeft(DLine L, Point p) { return crossDet(L.v, p - L.p) > 0;}374 Point dLineIntersect(DLine a, DLine b) {375 Vec u = a.p - b.p;376 double t = crossDet(b.v, u) / crossDet(a.v, b.v);377 return a.p + a.v * t;378 }379 380 Poly halfPlane(DLine *L, int n) {381 Poly ret = Poly();382 sort(L, L + n);383 int fi, la;384 Point *p = new Point[n];385 DLine *q = new DLine[n];386 q[fi = la = 0] = L[0];387 for (int i = 1; i < n; i++) {388 while (fi < la && !onLeft(L[i], p[la - 1])) la--;389 while (fi < la && !onLeft(L[i], p[fi])) fi++;390 q[++la] = L[i];391 if (fabs(crossDet(q[la].v, q[la - 1].v)) < EPS) {392 la--;393 if (onLeft(q[la], L[i].p)) q[la] = L[i];394 }395 if (fi < la) p[la - 1] = dLineIntersect(q[la - 1], q[la]);396 }397 while (fi < la && !onLeft(q[fi], p[la - 1])) la--;398 if (la - fi <= 1) return ret;399 p[la] = dLineIntersect(q[la], q[fi]);400 for (int i = fi; i <= la; i++) ret.pt.push_back(p[i]);401 return ret;402 }403 404 405 // 3D Geometry406 void getCoor(double R, double lat, double lng, double &x, double &y, double &z) {407 lat = toRad(lat);408 lng = toRad(lng);409 x = R * cos(lat) * cos(lng);410 y = R * cos(lat) * sin(lng);411 z = R * sin(lat);412 }413 414 415 /****************** template above *******************/416 417 const int N = 111;418 Seg seg[N];419 bool vis[N << 1][N << 1], ig[N << 1];420 Point st, te;421 422 bool onSeg(Point x, int id, int n) {423 for (int i = 0; i < n; i++) {424 if (i == id) continue;425 if (onSeg(x, seg[i])) return true;426 }427 return false;428 }429 430 bool crossSeg(Point s, Point t, int n) {431 Seg a = Seg(s, t);432 for (int i = 0; i < n; i++) {433 if (segIntersect(a, seg[i]) == 1) return true;434 }435 return false;436 }437 438 void buildMat(int n) {439 memset(ig, 0, sizeof(ig));440 memset(vis, 0, sizeof(vis));441 for (int i = 0; i < n; i++) {442 ig[i << 1 | 1] = onSeg(seg[i].s, i, n);443 ig[i + 1 << 1] = onSeg(seg[i].t, i, n);444 }445 for (int i = 0; i < n; i++) {446 if (!ig[i << 1 | 1]) {447 vis[0][i << 1 | 1] = vis[i << 1 | 1][0] = !crossSeg(st, seg[i].s, n);448 vis[n << 1 | 1][i << 1 | 1] = vis[i << 1 | 1][n << 1 | 1] = !crossSeg(te, seg[i].s, n);449 for (int j = 0; j < n; j++) {450 if (i == j) continue;451 if (!ig[j << 1 | 1]) {452 vis[i << 1 | 1][j << 1 | 1] = vis[j << 1 | 1][i << 1 | 1] = !crossSeg(seg[i].s, seg[j].s, n);453 }454 if (!ig[j + 1 << 1]) {455 vis[i << 1 | 1][j + 1 << 1] = vis[j + 1 << 1][i << 1 | 1] = !crossSeg(seg[i].s, seg[j].t, n);456 }457 }458 }459 if (!ig[i + 1 << 1]) {460 vis[0][i + 1 << 1] = vis[i + 1 << 1][0] = !crossSeg(st, seg[i].t, n);461 vis[n << 1 | 1][i + 1 << 1] = vis[i + 1 << 1][n << 1 | 1] = !crossSeg(te, seg[i].t, n);462 for (int j = 0; j < n; j++) {463 if (i == j) continue;464 if (!ig[j << 1 | 1]) {465 vis[i + 1 << 1][j << 1 | 1] = vis[j << 1 | 1][i + 1 << 1] = !crossSeg(seg[i].t, seg[j].s, n);466 }467 if (!ig[j + 1 << 1]) {468 vis[i + 1 << 1][j + 1 << 1] = vis[j + 1 << 1][i + 1 << 1] = !crossSeg(seg[i].t, seg[j].t, n);469 }470 }471 }472 }473 }474 475 void floyd(int n) {476 for (int k = 0; k < n; k++) {477 for (int i = 0; i < n; i++) {478 for (int j = 0; j < n; j++) {479 vis[i][j] |= vis[i][k] & vis[k][j];480 }481 }482 }483 }484 485 bool work(int n) {486 st = Point(0.0, 0.0);487 te = Point(555.0, 555.0);488 buildMat(n);489 // for (int i = 0; i < (n << 1); i++) {490 // for (int j = 0; j < (n << 1); j++) {491 // if (vis[i][j]) {492 // printf("%d%c %d%c\n", i + 1 >> 1, i & 1 ? 's' : 't', j + 1 >> 1, j & 1 ? 's' : 't');493 // }494 //// printf("%d", vis[i][j]);495 // }496 //// puts("");497 // }498 int s = 0, t = n << 1 | 1;499 floyd(n + 1 << 1);500 return vis[s][t];501 }502 503 int main() {504 // freopen("in", "r", stdin);505 int n;506 Point tmp[2];507 while (cin >> n && n) {508 for (int i = 0; i < n; i++) {509 for (int j = 0; j < 2; j++) {510 cin >> tmp[j].x >> tmp[j].y;511 }512 Vec vec = tmp[0] - tmp[1];513 seg[i] = Seg{ tmp[0] + vecUnit(vec) * 1e-5, tmp[1] - vecUnit(vec) * 1e-5};514 }515 if (work(n)) puts("no");516 else puts("yes");517 }518 return 0;519 }520 521 /*522 8523 -7 9 6 9524 -5 5 6 5525 -10 -5 10 -5526 -6 9 -9 -6527 6 9 9 -6528 -1 -2 -3 10529 1 -2 3 10530 -2 -3 2 -3531 532 8533 -7 9 5 7534 -5 5 6 5535 -10 -5 10 -5536 -6 9 -9 -6537 6 9 9 -6538 -1 -2 -3 10539 1 -2 3 10540 -2 -3 2 -3541 542 9543 2 9 7 8544 -7 9 5 7545 -5 5 6 5546 -10 -5 10 -5547 -6 9 -9 -6548 6 9 9 -6549 -1 -2 -3 10550 1 -2 3 10551 -2 -3 2 -3552 553 9554 3 9 7 8555 -7 9 5 7556 -5 5 6 5557 -10 -5 10 -5558 -6 9 -9 -6559 6 9 9 -6560 -1 -2 -3 10561 1 -2 3 10562 -2 -3 2 -3563 564 3565 50 50 -50 50566 -50 50 0 -1567 50 50 0 -1568 569 3570 50 50 -50 50571 -50 50 0 1572 50 50 0 1573 574 0575 */
——written by Lyon